Immediate Regularization after Blow-up
نویسندگان
چکیده
We study solutions of some supercritical parabolic equations which blow up in finite time but continue to exist globally in the weak sense. We show that the minimal continuation becomes regular immediately after the blow-up time and if it blows up again, it can only do so finitely many times.
منابع مشابه
Some comments concerning the blow-up of solutions of the exponential reaction-diffusion equation
The aim of this paper is to refine some results concerning the blow-up of solutions of the exponential reaction-diffusion equation. We consider solutions that blow-up in finite time, but continue to exist as weak solutions beyond the blow-up time. The main result is that these solutions become regular immediately after the blow-up time. This result improves on that of Fila, Matano and Polácik, ...
متن کاملGlobal Existence and Blow-Up for a Class of Degenerate Parabolic Systems with Localized Source
This paper deals with a class of localized and degenerate quasilinear parabolic systems ut = f (u)( u+ av(x0, t)), vt = g(v)( v + bu(x0, t)) with homogeneous Dirichlet boundary conditions. Local existence of positive classical solutions is proven by using the method of regularization. Global existence and blow-up criteria are also obtained. Moreover, the authors prove that under certain conditi...
متن کاملSymmetric Regularization, Reduction and Blow-up of the Planar Three-body Problem
We carry out a sequence of coordinate changes for the planar three-body problem which successively eliminate the translation and rotation symmetries, regularize all three double collision singularities and blow-up the triple collision. Parametrizing the configurations by the three relative position vectors maintains the symmetry among the masses and simplifies the regularization of binary colli...
متن کاملA note on blow-up in parabolic equations with local and localized sources
This note deals with the systems of parabolic equations with local and localized sources involving $n$ components. We obtained the exponent regions, where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data. It is proved that different initial data can lead to different blow-up phenomena even in the same ...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 37 شماره
صفحات -
تاریخ انتشار 2005